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Use of the action-angle variables (see e, g, [1]) leads, in a number of cases, to consider-
able simplification when the perturbation method is applied to study the dynamics of
perturbed motion, especially when computing the higher order approximations, Below
we obtain such variables for the problem of a solid rotating freely about a fixed point
(the Euler-Poinsot case),

Free motion of a solid with a fixed point can be described by a system of canonical
equations whose Hamiltonian is [2]
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Here 4, B, C are the principal moments of inertia of the body relative to the fixed
point, G is the kinetic moment, G, is its projection on the axis corresponding to the
moment of inertia C of the associated coordinate system, and 9, &, ¢ are the Euler
angles (of precession, nutation and self-rotation) defining the position of the body in the
fixed coordinate system of which one axis is collinear with the kinetic moment vector,
Position of this vector in the initial absolute coordinate system can be defined by the
following two quantities: L which is the projection of the kinetic moment on one axis
of the initial coordinate system, and the angle h. The quantities G, Gy, L, ¥, 9, h form
a complete set of canonical variables for the present problem.

Change to the action-angle variables is effected by means of a canonical transforma-
tion which transforms the Hamiltonian A into a function of impulses only, and is inde-
pendent of the angles,

In our problem we can use the triad G, L, I of impulses as the action variables, Here
I is the projection of the kinetic moment on an axis of the associated coordinate system,
averaged over the characteristic rotation , _ —2':?' @ G, do @
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Here the integration is performed over the complete cycle of variation of G, relative
to ¢, in accordance with Eq. (1), If we choose as the O axis of the associated coordi-
nate system that axis of the ellipsoid of inertia on which the projection of the kinetic
moment vector is always positive, we can express / in terms of the initial variables as

follows: o Vor
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where x and A are positive parameters given by
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Relation (3) defines A as an implicit function of 7 / . This enables us to obtain the
required angular variables using the following generating function:

s=Li+6v+{ 6 C. 1, 9140

On performing the necessary calculations we find that the angles conjugated with the
impulses L, G, I are, respectively,
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The auxilliary variable t is related to ¢ as follows:

ge=—VI+xtgf (E=0 for p=m/2)

The Hamiltonian of the unperturbed motion assumes the following form in the action-
angle variables L, G, 1, b, v, f:
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where A (in accordance with (3)), should be regarded as a function of 1 /6 .
Equations of the unperturbed motion
L'=0,=0,I'=0,r=20
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are easily integrable,

In order to be able to study the perturbed motion using the variables just obtained we
must express the corresponding Hamiltonians in terms of these variables, Since the per~
turbation part of the Hamiltonian is usually a function of body position which is defined
by the direction cosines if the associated coordinate system is the absolute one, it is
sufficient to express the direction cosines of the body in térms of the new variables,

We find that the matrix of the direction cosines can be written in the form

S = 58,8,
where
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and the elements of the matrix §, depend on a single angular variable 7, and can there-
fore be expanded into Fourier serfes in this variable, The formulas obtained are analog-
ous to those obtained by Jacobi while deriving the explicit relation between the direction
cosines and time [3]. The following expansions are valid for the elements s;; of the
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Here K = K () is the complete eiliptic integral of the first kind with modulus 3,
g = oxp (— K’/ K) and the parameter s is given by

ss—i%-l?(arctg—;-, V{T—-_ﬁ)

The computing procedures and results are given in more detail in [4].
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We solve the problem of optimal (in a certain defined sense) stabilization of rotation of
a gyrostat (a rigid body with three flywheels) whose center of mass moves along a circu-
lar orbit in the central Newtonian force field.

In [1, 2] an analogous problem of stabilization of rotation of a rigid body in inertial
motion was solved, Problems of stability of positions of relative equilibrium of station-
ary motions of rigid bodies and gyrostats in the Newtonian force field were studied in
detail in [3—-6], We know that the motions of a rigid body mentioned above can be sta-
bilized by passive damping [7, 8]

1, Inftial equations of motion, Statement of the problem,
Using the notation of [1] we shall consider a symmetrical gyrostat, i, e. a rigid body
with three flywheels (€= C, = €, I, = I, = I) moving in the central Newtonian

force field (0, is the center of atraction and O
\ X,  is the center of mass of the gyrostat). Equations
of motion of the gyrostat [4, 5] admit the fol-
z lowing particular solution of the type of regular
@ R, / precession : the center of mass O moves in the
7 X,0,X: plane along a circular orbit of radjus
Ry with constant angular velocity @' = o, .
J The gyrostat rotates uniformly with relative
< *  angular velocity ¢'=@ about the axis of sym-
— metry Oz, normal to the orbital plane, Two
50), ¢ flywheels whose axes lie in the plane z,0z, are
at rest, and the third
X,  § .Z‘; flywheel whose axis
of rotation is Oz, is t %' I x' K T
Fig, 1 either at rest or in

b

Table 1

uniform motion rela~ g Bu | B | Bus
tive to the body. Figure 1 and Table 1 depict the following X} Ba Bas
coordinate systems: 0,X,X,X, is inertial; Ozz,zy is rigidly Xs! Bn | Bs

connected with the gyrostat and its axes coincide with the axes



