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Use of the action-angle variables (see e. g. [l]) leads, in a number of cases, to consider- 
able simplification when the perturbation method is applied to study the dynamics of 
perturbed motion, especially when computing the higher order approximations. Below 
we obtain such variables for the problem of a solid rotating freely about a fixed point 
(the Euler-Poinsot case). , 

Free motion of a solfd with a fixed point can be described by a system of canonical 
equatfons whose Hamiltonian is p] 
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Here A, B, C are the principal moments of inertia of the body relative to the fixed 
point, G is the kinetic moment, Gr is its projection on the axis corresponding to the 
moment of inertia C of the associated coordinate system. and $, 6, ‘p are the E&r 
angles (of precession, nut&on and self-rotation) defining the position of the body in the 
fixed coordinate system of which one axis is collinear with the kinetic moment vector. 
Position of this vector in the initial absolute coordinate system can be defined by the 
following two quantities : L which is the projection of the kinetic moment on one axis 
of the initial Coordinate system, and the angle h. The quantities G, Cc, L, 9, ‘p, k form 
a complete set of canonical variables for the present problem. 

Change to the action-angle variables is effected by means of a canonical transforma- 
tion which transforms the Hamiltonian H into a function of impulses only. and is inde- 
pendent of the angles. 

In our problem we can use the triad G, L, I of impulses as the action variables. Here 
I is the projection of the kinetic moment on an axis of the associated coordinate system, 

averaged ova the characteristic rotation I _ 1 
“n G< dcp (2) 
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Here the iteration is performed over the complete cycle of variation of Gr relative 
to cp, in accordance with Eq. (1). If we choose as the 05 axis of the associated coordi- 
nate system that axis of the ellipsoid of inertia on which the projection of the kinetic 
moment vector is always positive, we can express I in terms of the initial variables as 
follows : 

I =~!~~)l’*[(hl+xa)nj~, x2, hj-M(h)] (3) 

where x and h are positive parameters given by 
G(B-A) 
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Relation (3) defines A as an implicit function of I / G. This enables us to obtain the 
required angular variables using the following generating function : 

s=Lh+G$+SGL(G, z,cp)dcp 

OR performing the necessary calculations we find that the angles conjugated with the 
impulses L, G, i are, respectively, 

v=&lp+ ?% + x2) w + PC”) 
x [II (5, x2, a] - l-l (+ , 9, a) W] 
I as _I_ 

n F (5, a) 
=ar=z K(h) 

The auxilliary variable t is related to q~ as follows : 

ctg cp = - 7/1 + x2 tg E ( 5 = 0 for cp = x12 ) 

The Hamiltonian of the unperturbed motion assumes the following form in the action- 
angle variables L, G, 1, h, v, f : 

H 
G2 C-A x2 

=x i-c- 
i ?@ + he ) 

where h (in accordance with (3) ), should be regarded as a function of I / G . 
Equations of the ~~r~r~d motion 

L’ = 0, G’ = 0, I’ = 0, h’ = 0 

-=~=Q,(Z, G), j'=s=Qs(I, G) 

are easily integrable. 
In order to be able to study the perturbed motion using the variables just obtained we 

must express the corresponding Hamiltonians in terms of these variables. Since the per- 
turbation part of the Hamilt~i~ is usually a function of body position which is defined 
by the direction cosines if the associated coordinate system is the absolute one, it is 
sufficient to express the direction cosines of the body in terms of the new variables. 

We find that the matrix of the direction cosines can be written in the form 

where 
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omh -SiIlhCOS8 sin h sin 6 

ainh ooshcar6 -ashsin 

0 sin6 co3 B 
COU6 =+O) 

and the elements of the matrix S,,depend on a single angular v&able f, and can there- 
fore be expanded into Fouriet series in this variable. The formulas obtained are analog- 
ous to those obtained by JaCobi while deriving the explicit rc;letion between the direction 
cosines and time p$ The following expansfons are valid for the elements sii of the 
mauix s, : 

New, K s K (A) is the complete eiliptic integral of the first kind with mod&s I, 
g = exp (-- Nfif’ / K) and the parameter 0 is given by 

The conptafRg pGooedutes andrarsulta ar8 given in mow detail in f43. 

BIBLIOGRAPHY 

1. Arnol’d, V. I. , Small value denominators and the problems of stability of mo- 
tion in the classical and celestial mechanics. Usp. mat. nauk Vol. 18. 1963. 



The action-angle variables in the Euler-Poinsot problem 925 

2. Depri. A., Use of the phase plane in the study of free rotation of a solid about 
a fixed point. Coil. “Mekhan~a”. Collection of translations and reviews of 
foreign periodicals, N% 1968. 

3. Jac0bi.C. G. J., Gesammelte Werke, Berlin, Raimer, Bd. 2, S. 289-352. 1882. 
4. Sadov. Iu. A., Action-angle variables in the Euler-Poinsot problem, Inst. prikl. 

matem., Akad. Nauk SSSR, Prep. Np22, 1970. 
Translated by L. K. 

OPTIC ST~I~IZATI~N OF ROTATION OF A ~~~STAT 
IN THE NEMPONJAN FORCE FXELD 

PMM Vol. 34, Ng5, 1970, pp. 965-972 
V. V. KREMENTULO 

(Moscow) 
(Received January 23, 1970) 

We solve the problem of optimal (in a certain defined sense) stabilization of rotation of 
a gyrostat (a rigid body with three flywheels} whose Center of mass moves along a circu- 
lar orbit in the central Newtonian force field. 

In [l; 21 an analogous problem of stabilization of rotation of a. rigid body in inertial 
motion was solved, Problems of stability of positions of relative equilibrium of station- 
ary motions of rigid bodies and gyrostats in the Newtonian force field were studied in 
detail in c3-63. We know that the motions of a rigid body mentioned above can be sta- 
bilized by passive damping p; 81. 

1. Initial equations of motion, Strtsmrnt of the probhm, 
Using the notation of [I) we shall consider a symmetrical gyrostat, i. e. a rigid body 
with three flywheels (C,*= C, = C, I, = I, = I) moving in the central Newtonian 

force field (0, is the center of attraction and 0 
is the center of mass of the gyrostat). Equations 
of motion of the gyrostat [4, 51 admit the fol- 
lowing particular solution of the type of regular 
precession: the center of mass 0 moves in the 
X10,X2 plane along a circular orbit of radius 
At, with constant angular velocity @’ = o1 . 
The gyrostat rotates uniformly with relative 
angular velocity vp’==o about the axis of sym- 
merry 0~~ normal to the orbital plane, Two 
flywheels whose axes lie in the plane qOz, are 
at rest, and the third 
flywheel whose axis Table 1 

of rotation is 02, is 
either at rest or in 

1 4’ f x9’ 1 X8’ 

I I I Fig, 1 
uniform motion rela- 

tive to the body. Fignre 1 and Table 1 depict the following 
coordinate systems : O,X,X,Xa is inertial ; Ozlz,z, is rigidly xs 
connected with the gyrostat and its axes coincide with the axes 


